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Effects of perfluorooctane sulfonate (PFOS) exposure
on markers of inflammation in female B6C3F1 mice

MEAGAN A.M. MOLLENHAUER1, SARAH G. BRADSHAW2, PATRICIA A. FAIR3,
W. DAVID MCGUINN4 and MARGIE M. PEDEN-ADAMS1,5
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Perfluorooctane sulfonate (PFOS; 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonic acid) has been reported to alter
humoral immune functions, but inflammatory processes following PFOS exposure have not been fully characterized. Therefore, the
current study, assessed TNF-α and IL-6 concentrations in serum and peritoneal lavage fluid, numbers of splenoctyes expressing
intracellular TNF-α, IL-6, IL-10 or IL-1, and ex vivo TNF-α and IL-6 production by peritoneal macrophages following either in
vivo or in vitro LPS exposure. Adult female B6C3F1 mice were exposed orally for 28 days to 0, 1, 3, or 300 mg PFOS/kg total
administered dose [TAD] (e.g., 0, 0.0331, 0.0993 or 9.93 mg/kg/day). Body and spleen masses were significantly reduced in the
highest PFOS treatment group compared to the control group, whereas liver mass was significantly increased. Serum TNF-α levels
were significantly decreased following exposure to 1 mg PFOS/kg TAD as compared to controls, while serum IL-6 levels were
increased. IL-6 concentrations in peritoneal lavage fluid decreased with increasing dose. PFOS treatment did not alter numbers of
splenocytes expressing intracellular levels of TNF-α, IL-10 or IL-1. Numbers of splenocytes expressing intracellular levels of IL-6
were significantly decreased in the 3 mg/kg treatment as compared to controls. Overall, these data suggest that PFOS exposure can
alter some inflammatory processes, which could potentially lead to misdirected inflammatory responses.

Keywords: PFOS, inflammation, IL-6, TNFα, cytokines, immune, macrophages.

Introduction

Perfluorinated alkyl acids (PFAAs) are used as surface pro-
tectors or stain repellants for fabrics, upholstery, carpet
and leather and as fire-fighting foams, insecticides and cor-
rosion inhibitors. This class includes the compounds per-
fluorooctane sulfonic acid (PFOS) and perfluorooctanoic
acid (PFOA).[1,2] PFAAs are persistent environmental con-
taminants that bioaccumulate and biomagnify. PFAAs are
known to be globally distributed, having been identified
in environmental and wildlife samples worldwide, with the
specific PFAAs, PFOS and PFOA constituting the highest
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concentrations.[3−5] Exposure to these PFAA compounds
is associated with hepatotoxicity, neurotoxicity, endocrine
disruption, immunotoxicity and carcinogenicity.[6−10] Re-
search on the toxicities of these compounds show they
are directly responsible for a number of biological alter-
ations including peroxisome proliferation, increased lipid
metabolism, altered gap junction communication and in-
creased cell membrane fluidity.[2,11,12]

Recent research has provided evidence that PFAAs may
up-regulate a large number of genes involved in the control
of lipid and fatty acid metabolism.[2,13] The exact mech-
anism or mechanisms of action by which PFAAs exert
their toxicity is currently unknown; nevertheless, a signif-
icant body of recent research suggests that they may act
through activation of the peroxisome proliferator-activated
receptor-alpha (PPAR-α).[14−19] PFOS and PFOA are
known activators of both human and mouse PPAR-α
and exposure to PFOS or PFOA results in the induc-
tion of endogenous PPAR-α target gene expression.[16,19,20]
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98 Mollenhauer et al.

PPAR-α activation triggers a wide array of signal-
ing cascades including those that regulate innate im-
munity, adaptive immunity, and processes involved in
inflammation.[21−24]

Several laboratories have assessed the general immuno-
toxicity of PFAAs,[10,25−37] as well as their effects on
inflammation,[13,17,18,38] with most of the published inflam-
mation studies investigating PFOA. In mouse models of
inflammation, PFOA is anti-inflammatory[17,18] and causes
the down-regulation of a number of immunoregulatory
genes including interleukins,[13] known regulators of in-
flammatory processes.[39] Guruge et al.[13] identified signif-
icant up-regulation of a gene involved in the metabolism
of prostaglandin, a known inflammatory mediator, follow-
ing PFOA exposure in vivo. These above studies indicate
an inverse relationship exists between PFOA exposure and
inflammation. However, in wild bottlenose dolphins, pre-
liminary data suggest a positive correlation between PFOS
and PFOA plasma levels and indices of inflammation and
immunity (increased CRP, numbers of total lymphocytes,
and numbers of B-cells).[40,41] Additionally, mice exposed
to PFOA exhibit increased IgE levels that would most likely
trigger an increase in inflammation.[29]

Few studies to date have assessed the effects of PFOS
on inflammation. Qazi et al.[42] assessed TNF-α and IL-6
production in male C57BL/6 mice exposed for ten days
to either 0 or 400 mg PFOS/kg TAD[43] (40 mg/kg/d;
0.02% in diet).[42,43] They report increased ex vivo TNF-
α and IL-6 production by peritoneal cells and increased
TNF-α production in mixed spleen cell suspensions (e.g.,
not separated by immunophenotype) following in vitro LPS
stimulation. Qazi et al.[42] also report no change in num-
bers of macrophages (CD11b+) in the spleen at this PFOS
concentration. Additionally, following in vivo exposure to
PFOS for 10 days and 300 µg LPS for 2 hr (with no ex vivo
LPS exposure) they observed significant increases in peri-
toneal cell production of TNF-α and significant decreases
in mixed splenocyte TNF-α and IL-6 production, but no
effect on peritoneal cell production of IL-6.[42] Thus, the
relationship between PFAA exposure and the inflamma-
tory response is currently not fully understood, but species
differences, dose and exposure regimen appear to alter the
effects observed.

PFOS is the predominate PFAA found in both human
and wildlife blood samples,[3,44−47] but little is known re-
garding its impact on inflammation at environmentally
relevant exposure concentrations. TNF-α and IL-6 are
known mediators of inflammatory and immunoregulatory
responses and are commonly used as indicators of inflam-
mation in mammals.[48−50] Therefore, the current study as-
sessed TNF-α and IL-6 in serum, splenocytes, peritoneal
lavage fluid and production by macrophages in a standard
28-day oral exposure[51] in adult female B6C3F1 mice[52,53]

using a dose range to include environmentally relevant ex-
posure concentrations.[46,47]

Materials and methods

Materials

Unless otherwise specified, all chemicals and mitogens were
purchased from Sigma (St. Louis, MO). Perfluorooctane
sulfonic acid potassium salt (stated purity >98%) was ob-
tained from Fluka Chemical (via Sigma, CAS No. 2795-39-
3). Non-essential amino acids (NEAA; 10 mM 100X) and
sodium pyruvate (100 mM) were obtained from GIBCO
Laboratories (Grand Island, NY). RPMI-1640 medium
(with L-glutamine and sodium bicarbonate), Dulbecco’s
phosphate buffered saline (DPBS; without Ca+2 and Mg)
and penicillin/streptomycin (5,000 I.U./ml; 5,000 µg/ml)
were purchased from Cellgro (Mediatech, Herndon, VA).
The fetal bovine serum (FBS) was from Gemini Bio-
Products (West Sacramento, CA). ELISA plates were from
NUNC (Rochester, NY) and BD Biosciences (Franklin
Lakes, NJ). The fluorescent antibodies allophycocyanin
(APC) conjugated rat immunoglobulin (Ig) G1 anti-mouse
TNF monoclonal antibody, phycoerythrin (PE) conjugated
Armenian hamster IgG1 anti-mouse IL-1α antibody, PE
conjugated rat IgG1 anti-mouse IL-6 monoclonal antibody
and APC conjugated rat IgG2b anti-mouse IL-10 mon-
oclonal antibody were purchased from BD Biosciences.
GolgiStop protein transport inhibitor and BD OptEIA cy-
tokine ELISA sets were purchased from BD Biosciences.
Tissue culture plates, bovine serum albumin (fraction V;
BSA), Tris and disposables were purchased from Fisher
Scientific (Atlanta, GA). Lipopolysaccharide (LPS) from
E. coli 0111:B4 was acquired from InvivoGen (San Diego,
CA) and paraformaldehyde from Sigma Aldrich Co. (St.
Louis, MO). Isoflurane (AErrane) was obtained from Bax-
ter Pharmaceutical Products Inc. (Deerfield, IL).

Animal care

Mice were housed in plastic shoebox cages on corncob bed-
ding with micro-isolator lids in a HEPA filtered ventilated
rack system and administered food (TekLab Sterilizable
Rodent Diet, formula no. 8656; Harlan-Teklab, Madison,
WI) and water ad libitum. Prior to starting a particular ex-
periment five, 7- to 8-week-old female B6C3F1 mice (Jack-
son Laboratory, Bar Harbor, ME or Harlan, Madison, WI)
were randomly placed 5 to a cage in a treatment room. Mice
acclimated to the conditions of the treatment room (12 hr
light/dark cycle, 22 ± 2◦C, 60–65% relative humidity) for
1 week before dosing began. Mice were observed daily and
bedding, food and water were changed twice a week.

Animal dosing

PFOS concentrations selected for this study were based
on reported mean serum levels in bottlenose dolphin[44]

and occupationally exposed humans[46,55] as well as on a
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Fig. 1. Schematic of experimental design. Adult female B6C3F1 mice were exposed orally for 28 days to a total of 0, 1, 3, or 300 mg
PFOS/kg. The sample size was 5 mice/treatment and all experiments were repeated a minimum of two times unless otherwise stated.
PFOS = perfluorooctane sulfonate. i.p. = intraperitoneal (i.p.) injection.

preliminary study with PFOS that examined similar inflam-
matory endpoints following a 400 mg/kg total dose.[42,43]

PFOS was administered via oral gavage in a solution of
Milli-Q water containing 0.5% Tween-20.[54] Control mice
received Milli-Q water containing 0.5% Tween 20. Mice
were dosed daily for 28 days (0, 0.0331, 0.0993 or 9.93 mg
PFOS/kg/day) to yield a targeted total administered dose
(TAD) over the 28 days of 0, 1, 3, or 300 mg/kg. The
daily doses listed here reflect only the concentration of the
PFOS ion separate from the potassium salt. When compar-
ing doses or concentrations reported in other studies, it is
often unknown whether the potassium mass was removed.
When it is not removed, the PFOS concentration is over-
estimated by 7.3%. When rounded to a single significant
digit, the TAD is identical for PFOS potassium salt or the

PFOS ion; therefore, these doses are used throughout the
paper for simplicity.[10]

In some trials, mice were challenged via intraperitoneal
(i.p.) injection with 0.1 mL of a 25 µg/mL LPS solu-
tion (ultra pure from E. coli 0111:B4 strain)[56,57] 1 hr
prior to sample collection, while in other trials the mice
were not challenged with LPS (Fig. 1). LPS injection via
i.p. exposure is a common model of inflammation.[49] All
procedures were approved by the Medical University of
South Carolina Institutional Animal Care and Use Com-
mittee (IACUC) and conducted in an Association for As-
sessment and Accreditation of Laboratory Animal Care
(AAALAC) accredited facility. Unless otherwise stated,
all experiments were conducted at least twice to verify
results.
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100 Mollenhauer et al.

Sample collection and processing

To calculate body mass change over the 28 days, mice were
measured one day prior to exposures and at the termi-
nation of the experiment (weight change = final mass -
initial mass). Mice were then euthanized with CO2 and
spleens and livers were collected. Organ mass was nor-
malized for body weight and reported as a somatic index
{(organ weight/body wt) × 100}. Spleens were aseptically
processed into single cell suspensions with the use of ster-
ile, frosted microscope slides. Red blood cells were removed
by adding red blood cell lysis buffer (0.16 M ammonium
chloride, 0.17 Tris, pH 7.6). Viable spleen cell counts were
obtained by trypan blue exclusion using a hemacytometer.

Serum cytokines

For detection of inflammatory cytokines, mice were chal-
lenged i.p. with 0.1 mL of a 25 µg/mL LPS solution (ul-
tra pure from E. coli 0111:B4 strain)[56,57] 1 hr prior to
blood collection (Fig. 1). Whole blood was collected retro-
orbitally, following anesthetization with isoflurane. Imme-
diately following blood collection, mice were euthanized
with CO2. Blood was permitted to clot for 1 hr. After clot
formation, the blood sample was centrifuged for 10 min
using a microcentrifuge (Eppendorf, 5415C, 1350g) and
serum was transferred into an Eppendorf tube. Serum was
frozen at –80◦C until analysis. TNF-α and IL-6 were mea-
sured by cytokine ELISA sets according to manufacturer’s
directions. Samples were read at 450 nm with a spectropho-
tometer (SpectraCount; Packard, Meridian, CT). Sample
cytokine concentrations were determined using regression
analysis of a 7-point standard curve ranging from 15.6
pg/mL to 1000 pg/mL.

Splenic intracellular cytokine expression

Numbers of splenocytes expressing intracellular TNF-α,
IL-1, IL-6 and IL-10 were assessed from PFOS treated
mice following in vivo LPS challenge (Fig. 1). Spleen cells
were diluted to 1 × 106 cells and incubated with GolgiStop
protein transport inhibitor for three hours at room tem-
perature to inhibit cytokine transport. Inhibition of trans-
port results in accumulation of intracellular cytokine levels
allowing for better detection of cytokine producing cells
by flow cytometry. Cytokine secreting cells were analyzed
by flow cytometry following incubation of permeabilized
splenocytes with antibodies specific for TNF-α, IL-1, IL-6
and IL-10 (Becton Dickinson flow cytometer, FACScalibur;
San Jose, CA).

Ex Vivo production of cytokines by peritoneal macrophages
following In Vitro or In Vivo LPS stimulation

Peritoneal macrophages were isolated from unchallenged
and LPS challenged mice (Fig. 1). Macrophages were ob-

tained by lavage in peritoneal macrophage culture media
that consisted of RPMI-1640 supplemented with 1% FBS,
1% non-essential amino acids, 1% sodium pyruvate and 1%
penicillin/streptomycin. Peritoneal macrophages (1 × 106

cells/well) were plated in 24-well plates, allowed to adhere
for 2 hr and then washed 3 times with culture media to
remove nonadherent cells. After washing, cells from un-
challenged mice were cultured for 24 hr[58] with 0.1 µg/mL
of ultra pure LPS (from E. coli 0111:B4 strain).[57] in peri-
toneal macrophage culture media, while cells from LPS
challenged mice were cultured for 24 hr in fresh media
without LPS. Following the 24-hr culture period, super-
natants were collected and stored (−80◦C) for assessment
of TNF-α and IL-6. TNF-α and IL-6 were measured by
BD cytokine ELISA sets according to manufacturer’s di-
rections as described above.

Peritoneal lavage fluid cytokine levels

Following collection of peritoneal macrophages from LPS
challenged mice, peritoneal lavage fluid was centrifuged
(500 ×g) and supernatant was stored at −80◦C for TNF-α
and IL-6 analysis. TNF-α and IL-6 were measured by BD
ELISA as described previously.

Statistics

Data were tested for normality (Shapiro-Wilks W-test) and
homogeneity (Bartlett’s test for unequal variances) and, if
needed, appropriate transformations were made. A one-
way ANOVA was used to determine differences among
doses for each endpoint using JMP 4.0.2 (SAS Institute
Inc., Cary, NC) in which the standard error used a pooled
estimate of error variance. When significant differences
were detected by the F-test (P < 0.05), the student’s t-test
was used to compare means among treatments. Trend anal-
ysis, in selected cases, was performed using Kendall’s Tau.
Dose-response determinations were assessed using Prism
Graph Pad 4.0 (GraphPad Software, Inc.; La Jolla, CA)
with a standard curve for calculating dose response ac-
cording to Equations 1 and 2.

Y = Bottom + (TOP − Bottom)/(1 + 10(X−logEC50)) (1)
Y = Bottom + (TOP − Bottom)/(1 + 10(logEC50−X)) (2)

Where “Bottom” is the minimum value, “Top” is the maxi-
mum and LnEC50 is the log of the concentration that gives
a half-maximal response. Four of the data sets fit this model
and graphs of these are included as insets in the correspond-
ing figures.
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Fig. 2. Serum (A) TNF-α and (B) IL-6 levels in adult female B6C3F1 mice treated with PFOS orally for 28 days. Mice were challenged
in vivo by intraperitoneal injection with 25 µg lipopolysaccharide (LPS; ultra pure from E. coli 0111:B4 strain) 1 hr prior to sample
collection. Data are presented as mean ± SEM. Sample size for all treatments is 5. These experiments were conducted three times.
Data from a single experiment are shown, as results are representative of experiments. Bars with same letters in (A) are not significantly
different from each other, while bars with different letters are significantly different from each other (P < 0.05). The inset in (A)
indicates a dose-response model based on a standard curve for calculating dose response. The equations used were: Y = Bottom +
(TOP-Bottom)/(1+10(X-logEC50)) and Y = Bottom + (TOP-Bottom)/(1+10(logEC50X)). Where “Bottom” is the minimum value,
“Top” is the maximum and LnEC50 is the log of the concentration that gives a half-maximal response. PFOS = perfluorooctane
sulfonate. TAD = Total Administered Dose (daily doses are 1/28 of the TAD). ∗ Significantly different from respective control
(P < 0.05; P-value for serum IL-6 ANOVA was 0.014). γ Significantly different from IL-6 serum levels at the 1 mg/kg treatment. This
increase in serum IL-6 at 1 mg/kg and decrease at 3 mg/kg mirrors the numbers of cells expressing intracellular IL-6 in Table 2 and
when graphed in relationship to numbers of cells expressing intracellular IL-6 (Fig. 3) shows an association (R2 = 0.46).
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102 Mollenhauer et al.

Table 1. Body mass change and organ mass and cellularity in
adult female B6C3F1 mice treated with PFOS orally for 28
days.

PFOS
mg/kg Body Mass Normalized Normalized Total Spleen
TAD Changea Spleen Massb Liver Massb Cellularityc

0 1.7 ± 0.3 0.40 ± 0.01 5.02 ± 0.05 5.8 ± 0.7
1 1.9 ± 0.3 0.41 ± 0.02 4.91 ± 0.11 4.1 ± 0.4
3 1.4 ± 0.2 0.39 ± 0.01 4.99 ± 0.06 6.1 ± 0.5
300 −0.3 ± 0.4∗ 0.31 ± 0.02∗ 11.05 ± 0.09∗ 5.6 ± 0.4

aFinal mass (g) – initial mass (g). bCalculated as: (organ weight/body
weight) × 100. cCells × 107. Data are reported as mean + SEM.
Sample size for all groups is 5. *Significantly different from respective
control. (P ≤ 0.05). This experiment was conducted 3 times. Data from
a single representative experiment are shown. PFOS = perfluorooctane
sulfonate. TAD= Total Administered Dose (daily doses are 1/28 of
the TAD).

Results

Body and organ mass and spleen cellularity

Body mass change over the 28 days was significantly de-
creased compared to the control in the 300 mg/kg treat-
ment group only (Table 1). In the 300 mg/kg treatment
group liver mass was significantly increased (2.2-fold), while
spleen mass was significantly decreased by 22% (Table 1).
Although spleen mass was decreased significantly in the
300 mg/kg TAD treatment, total spleen cellularity was not
altered by any PFOS concentration (Table 1).

Serum and intracellular cytokines

PFOS exposure significantly decreased serum TNF-α con-
centrations in the 1 mg/kg treatment by 92%, but did not
alter serum TNF-α concentrations in the 3 or 300 mg/kg
PFOS treatments as compared to control (Fig. 2). Serum
TNF-α concentrations in the 3 and 300 mg/kg treatment
groups were significantly higher than concentrations in the
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Fig. 3. Scatter plot of serum IL-6 levels and corresponding num-
bers of splenocytes containing IL-6 in adult B6C3F1 mice treated
with PFOS orally for 28 days. Mice were challenged in vivo by in-
traperitoneal injection with 25 µg lipopolysaccharide (LPS; ultra
pure from E. coli 0111:B4 strain) 1 hr prior to sample collection.
(y = 8E-15x3 - 5E-8x2+ 0.0881x – 29521, R2 = 0.46).

1 mg/kg treatment group (Fig. 2). Serum IL-6 levels were
significantly increased at the 1 mg/kg dose as compared to
control, while levels at the 3 mg/kg dose were significantly
different from those at 1 mg/kg (Fig. 2). Absolute num-
bers of splenocytes containing intracellular IL-1, IL-10 and
TNF-α were not significantly affected by PFOS treatment
(Table 2). However, numbers of splenocytes expressing in-
tracellular IL-6 were significantly decreased from control
in the 3 mg/kg treatment group (Table 2). The pattern of
increase at 1 mg/kg and decrease at 3 mg/kg was con-
sistent between serum IL-6 levels and numbers of spleno-
cytes expressing intracellular IL-6 and did exhibit a non-
linear relationship (R2 = 0.46; Fig. 3). This relationship fit a
third-order polynomial equation indicating a non-random
response.

Peritoneal macrophage cytokine production and peritoneal
lavage fluid cytokine levels

Ex vivo TNF-α production by in vitro LPS-stimulated peri-
toneal macrophages collected from unchallenged mice (e.g.,
no LPS injection in vivo) from the 300 mg/kg group was

Table 2. Percent and absolute numbers of splenic lymphocytes expressing intracellular IL-1, IL-6, IL-10 or TNF-α following a 28
day PFOS oral gavage in female B6C3F1 mice.

Absolute No. Absolute No. Absolute No. Absolute No.
PFOS Percent Percent Percent Percent TNF-α IL-1 IL-6 IL-10
(mg/kg TAD) TNF-α IL-1 IL-6 IL-10 Cells ×106) (Cells x106) (Cells x106) (Cells x106)

0 6.1 ± 0.9 3.8 ± 0.8 5.6 ± 0.7 0.3 ± 0.1 3.8 ± 0.9 1.5 ± 0.3 2.3 ± 0.3 1.1 ± 0.5
1 8.8 ± 2.0 3.9 ± 1.0 6.3 ± 1.3 0.3 ± 0.2 3.4 ± 0.6 1.6 ± 0.4 2.6 ± 0.5 1.4 ± 0.7
3 4.6 ± 0.6 2.3 ± 0.3 3.0 ± 0.4∗ 0.2 ± 0.1 2.8 ± 0.5 0.7 ± 0.2 1.2 ± 0.2∗ 0.7 ± 0.4
300 6.1 ± 0.5 4.0 ± 0.9 6.0 ± 0.7 0.3 ± 0.1 3.4 ± 0.3 1.2 ± 0.4 2.4 ± 0.3 1.2 ± 0.4

Mice were challenged i.p. with 25 µg/mL LPS 1 hr prior to sample collection. Data are reported as mean ± SEM. Sample size for all treatment
groups is 5. This experiment was conducted three times. Data from a single representative experiment are shown. ∗Significantly different from
respective control (P < 0.05). The pattern of response for numbers of cells containing intracellular IL-6 mirrors pattern observed with serum
IL-6 levels and when graphed in relationship to serum levels (Fig. 3) shows an association (R2 = 0.46). LPS = lipopolysaccharide. PFOS =
perfluorooctane sulfonate. TAD = Total Administered Dose (daily doses are 1/28 of the TAD).
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Fig. 4. Ex vivo (A) TNF-α and (B) IL-6 production by peritoneal macrophages from adult female B6C3F1 mice treated with
PFOS orally for 28 days. Mice were not challenged with lipopolysaccharide (LPS) in vivo. Peritoneal macrophages were stimulated
with 0.1 µg/mL LPS in vitro for 24 hr. Data are presented as mean ± SEM. Sample size for all treatments is 5. *Significantly
different from control (P < 0.05). This experiment was conducted three times. Data from a single experiment are shown, as results are
representative of experiments. The inset in (A) indicates a dose-response model based on a standard curve for calculating dose response.
The equations used were: Y = Bottom+(TOP-Bottom)/(1+10(X-logEC50)) and Y = Bottom+(TOP-Bottom)/(1+10(logEC50-X)).
Where “Bottom” is the minimum value, “Top” is the maximum and LnEC50 is the log of the concentration that gives a half-maximal
response. PFOS = perfluorooctane sulfonate. TAD= Total Administered Dose (daily doses are 1/28 of the TAD).

significantly increased by 2.4-fold as compared to con-
trol mice (Fig. 4). TNF-α production by peritoneal
macrophages following in vivo LPS injection, but no LPS
stimulation in vitro, was not altered compared to control
(Fig. 5). IL-6 levels in culture supernatants from the 300
mg PFOS/kg TAD group that received LPS in vivo were
significantly higher (2.7-fold increase) than control (Fig.
5). Peritoneal lavage fluid, however, exhibited a significant
decreasing trend in IL-6 concentration in relation to PFOS
dose (Kendall’s Tau b= −1.0, p = 0.042; Fig. 6). Decreases
in TNF-α and IL-6 in peritoneal lavage fluid were dose re-

sponsive and TNF-α exhibited first order exponential decay
([TNF=t1*exp(−t2*PFOS)+t3]; Fig. 6).

Discussion

LPS injection, by either the i.v. or i.p. route, is a common
model of inflammation.[57−59] Following ip injection, LPS
is absorbed rapidly and distributed throughout the body
quickly (with approximately 10% of the LPS administered
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Fig. 5. Ex vivo (A) TNF-α and (B) IL-6 production by peritoneal
macrophages from adult female B6C3F1 mice treated with PFOS
orally for 28 days. Mice were challenged in vivo by intraperitoneal
injection with 25 µg lipopolysaccharide (LPS; ultra pure from
E. coli 0111:B4 strain) 1 hr prior to sample collection. Data are
presented as mean ± SEM. Sample size for all treatments is five.
*Significantly different from control (P < 0.05). This experiment
was conducted three times. Data from a single experiment are
shown, as results are representative of experiments. PFOS = per-
fluorooctane sulfonate. TAD = Total Administered Dose (daily
doses are 1/28 of the TAD).

appearing in circulation within 15 min).[59] When triggered
by infection (as mimicked by LPS injection) monocytes and
macrophages are the first cell types to respond and TNF-α
is the first cytokine released followed shortly by IL-6 and
IL-1.[59]

Studies in mice indicate that the kinetics of TNF-α and
IL-6 production vary between in vivo and in vitro LPS
exposure.[60] In vivo exposure to LPS causes more rapid
changes in the production of TNF-α and IL-6 than does
in vitro exposure, and is potentially influenced by other cell
types in the body. In vitro exposure to LPS following in
vivo exposure to PFOS, however, allows isolation of peri-
toneal macrophages from the system for assessment. In the
current study, in vitro LPS exposure resulted in increased
TNF-α production by peritoneal macrophages in the 300

mg PFOS/kg treatment and IL-6 production was not al-
tered. Conversely, following LPS injection, IL-6 produc-
tion by peritoneal macrophages was increased in the 300
mg PFOS/kg treatment group, but TNF-α production was
not altered.

These results are similar, in part, to those of Qazi et
al.[42] where exposure to 400 mg/kg TAD caused an in-
crease in both TNF-α and IL-6 production by peritoneal
macrophages following in vitro LPS exposure and an in-
crease in TNF-α following LPS injection. As the in vitro
and in vivo exposures to LPS offer different assessments of
the macrophages and system, and have differing cytokine
kinetic profiles it is not unexpected that the results between
the models differed in the current study as also shown by
Qazi et al.[42] Taken together, the results of the current study
suggest that peritoneal macrophage TNF-α and IL-6 pro-
duction in response to LPS exposure are not altered at en-
vironmentally relevant levels and that the balance of these
cytokines remains normal, while at 300 mg/kg TAD the
balance of TNF-α and IL-6 seemed to be altered and this
alteration varies depending on the LPS exposure model.

Serum cytokine levels reflect systemic production made
by various cells types, not just cells of the immune
system.[59] PFOS exposure in the current study, at the 1
mg/kg dose, significantly attenuated the increase in serum
TNF-α levels that occur following LPS injection. This was
not observed at the other doses. The observed increase in
mean serum TNF-α levels at 300 mg/kg TAD, suggests a
response similar to that seen in a previous study that re-
ported an increase in mean serum concentrations in mice
exposed to 400 mg PFOS/kg TAD (40 mg/kg day for 10
days orally [0.02% in diet]).[42,43] At the higher PFOS con-
centrations hepatotoxicity, as suggested by the increases in
liver mass, could have caused increased serum concentra-
tions of TNF-α.[61]

The decreases observed in serum TNF-α at the 1 mg/kg
dose could be expected to concurrently occur with de-
creased serum IL-6 levels since TNF-α production is re-
quired, in part, to trigger IL-6 production.[59] However, it
appears that PFOS may influence the balance and dynam-
ics of this relationship and that peritoneal macrophages
may not be the primary cellular target. Moreover, IL-6 and
TNF-α can modulate the levels of each other through neg-
ative feedback.[62,63] Qazi et al.[42] report increased serum
IL-6 levels in mice exposed to PFOS that were not injected
with LPS and no change in serum TNF-α levels, but fol-
lowing LPS injection they report no statistically significant
change in either serum TNF-α or IL-6 levels. The increases
in serum IL-6 at the 1 mg/kg treatment in the current
study do not appear to completely account for the decrease
in serum TNF-α levels at this PFOS concentration. Taken
together, PFOS seems to elicit the most striking effects on
serum TNF-α and IL-6 levels at the lowest concentration
used in the current study, indicating assessment of the dose-
response between 0 and 1 mg/kg TAD needs to be further
characterized. As the 1 mg/kg dose is relevant to reported
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Fig. 6. Peritoneal lavage fluid (A) TNF-α and (B) IL-6 levels in adult female B6C3F1 mice treated with PFOS orally for 28 days.
Mice were challenged in vivo by intraperitoneal injection with 25 µg lipopolysaccharide (LPS; ultra pure from E. coli 0111:B4 strain)
1 hr prior to sample collection. Data are presented as mean ± SEM. Sample size for all treatments is 5. This experiment was
conducted 3 times. Data from a single experiment are shown, as results are representative of experiments. The insets in (A) and (B)
indicate a dose-response model based on a standard curve for calculating dose response. The equations used were: Y = Bottom +
(TOP-Bottom)/(1+10(X-logEC50)) and Y = Bottom + (TOP-Bottom)/(1+10(logEC50-X)). Where “Bottom” is the minimum value,
“Top” is the maximum and LnEC50 is the log of the concentration that gives a half-maximal response. The decreasing trend in TNFα

with increasing dose seen in (A) fits a first-order exponential decay model [TNF = t1
∗exp(-t2*PFOS)+t3] where t1 = 140.16, t2 =

0.87829 and t3 = 43.266 and exhibits a decreasing dose-response. The decreasing trend with IL-6 in (B) is significant using Kendall’s
Tau (Kendall’s Tau b = −1.0, P = 0.042) and fits the dose-response model noted here PFOS = perfluorooctane sulfonate. TAD =
Total Administered Dose (daily doses are 1/28 of the TAD).
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occupational exposures and falls in the upper range of ex-
posures reported in the general population, possible effects
in humans cannot be disregarded.

A recent study by Fair et al.[28] demonstrated that in vitro
LPS-stimulated splenic B-cell IL-6 production from adult
female B6C3F1 mice is increased following in vivo exposure
to 1 mg PFOS/kg TAD (oral, 28-day exposure). The B-cell
IL-6 data from Fair et al.[28] corroborates the increases in
serum IL-6 levels and numbers of splenocytes expressing
intracellular IL-6 observed in the current study at 1 mg/kg
TAD following a 1-hr in vivo LPS challenge. Moreover,
numbers of cells containing intracellular IL-6 appeared re-
lated to serum levels of IL-6 in the current study. Serum IL-6
levels seemed proportionate to numbers of cell expressing
IL-6 for the spleen. Overall, the pattern of increased IL-6
following exposure to 1 mg/kg TAD was replicated in these
studies using both in vitro and in vivo IL-6 determinations.
In light of this observed pattern in PFOS exposure as it
relates to serum IL-6 levels and numbers of splenocytes ex-
pressing intracellular IL-6, an association between PFOS
and IL-6 can not be discounted at this time.

Inflammation, including TNF-α and IL-6 production, is
a tightly controlled process in the body that, when modu-
lated, can result in deleterious health effects. The balance
between TNF-α and IL-6 is critical to the control of the
inflammation process during early stages of infection.[64,65]

These processes are dynamic and effects often vary between
in vitro and in vivo LPS exposure.[60] The data assessed in
the current study provides only a snapshot of this dynamic
process as determination of kinetics was beyond the stated
scope of the study. Overall, these data suggest that PFOS,
at these exposure concentrations, affects inflammation, but
that the effect is not overwhelmingly anti-inflammatory
as would be expected with a PPAR-α agonist.[16−20,66−69]

Other studies report similar pro- and anti-inflammatory
results with other PPAR-α agonists.[66,70] Mice treated with
fenofibrate or Wy14,643 exhibited significantly increased
plasma levels of LPS-induced TNF-α[61,65] similar to the in-
crease in TNF-α at the highest PFOS concentration tested
in the current study. Hill et al.[65] speculate that these dis-
parate inflammatory effects could be the result of a very
complicated mixture of systemic PPAR-α agonism effects.
This could, therefore, explain the findings in the current
study.

Conclusion

To our knowledge, this is the first study to begin to exam-
ine the possible effects PFOS may have on inflammation
at environmentally relevant exposures (e.g., 1 and 3 mg/kg
TAD). Although the TNF-α data suggests possible anti-
inflammatory properties at low concentrations, overall the
data suggest that PFOS, a known PPAR-α agonist, is not
overwhelmingly anti-inflammatory but appears to cause a
mixture of both pro- and anti-inflammatory effects. Effects,
however, observed in serum TNF-α and IL-6 levels at the

lowest concentration, which falls in reported human ex-
posure ranges, suggests possible risk. Based on these data
and reported PFOS concentrations in humans and wildlife,
continued investigation is warranted to determine the com-
plete range of effects PFOS may have on immune function,
the role of PPAR-α, and more specifically assessment of
inflammation markers at lower exposure concentrations.
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